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Abstract: This study aims to improve solar radiation prediction using meteorological data from six 
Nigerian cities: Sokoto, Maiduguri, Ilorin, Ikeja, Enugu, and Port Harcourt. The dataset includes 31 
years of monthly data on rainfall, relative humidity, sunlight hours, wind speed, maximum and lowest 
temperatures, and evaporation Piche. The model uses a dihybrid recurrent neural network design, 
combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures. 
Hyperparameter tuning was used to find the optimal configuration. The results show the model 
outperforms standalone models, with a high degree of alignment and modest prediction errors. This 
model is reliable for renewable energy planning and management in Nigeria, offering a powerful 
method for time series forecasting.

Keywords: Dihybrid Recurrent Neural Network, Hyperparameter tuning, Meteorological, Data, 
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1. Introduction

Solar radiation forecasting is an essential part of the planning and management of 
renewable energy resources, notably solar power. Accurate solar radiation projections 
can improve the efficiency of solar energy systems, optimize energy output, and help 
to ensure the long-term viability of renewable energy projects. Nigeria, Africa’s most 
populous nation, faces significant energy challenges, including inadequate electricity 
supply, high energy costs, and reliance on fossil fuels. With a growing population of 
over 200 million people, Nigeria’s energy demand is projected to increase, exacerbating 
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energy poverty and environmental degradation. However, Nigeria is endowed with 
abundant renewable energy resources, particularly solar radiation, with regional 
variations. According to IEA (2015), daily, Northern Nigeria enjoys about 6.5 to 7.0 
kWh/m, Southern Nigeria between 5.5 and 6.0 kWh/m, Eastern Nigeria 5.8 to 6.3 
kWh/m, and Western Nigeria between 6.0 and 6.5 kWh/m of solar radiation. Despite 
a total electricity generation capacity of approximately 12,000 MW, Nigeria’s daily 
electricity consumption of 30 to 40 million kWh is unmet, resulting in widespread 
energy shortages. The country’s per capita electricity consumption of 0.3 to 0.4 kWh 
per person per day is one of the lowest in the world. Furthermore, Nigeria’s reliance 
on fossil fuels contributes to climate change, air pollution, and economic volatility. It 
is without a doubt that solar energy has enormous potential in Nigeria, due to ample 
sunlight, hence precise forecasting methods are required to fully utilise this renewable 
resource. In this study, we look at and analyze a climate dataset that includes solar 
radiation to learn about climatic patterns and trends in some of Nigeria’s main cities. 

Generally, accurate solar radiation projections help energy planners predict 
energy generation levels, balance supply and demand and integrate solar power 
more effectively into the system. Solar energy systems can be optimized by precisely 
estimating solar radiation to reduce operational costs and boost return on investment. 
This will encourage greater use of solar energy, reducing reliance on fossil fuels and 
minimizing greenhouse gas emissions. The data on solar radiation is important for 
agricultural planning since it influences crop growth, irrigation requirements, and total 
agricultural production. Recent research has emphasized the need for accurate climate 
forecasting in agriculture, water resources, and urban planning (Turyasingura et al., 
2023). As the importance of climate prediction grows, researchers have increasingly 
resorted to cutting-edge machine learning techniques, notably neural networks, 
to improve the precision and reliability of forecasts. Neural networks, inspired by 
the human brain’s adaptive learning processes, have proven extraordinary ability to 
recognize patterns, learn from vast datasets, and generalize to previously unforeseen 
scenarios. In the context of climate research, neural networks give a powerful tool 
for predicting complex phenomena such as temperature and precipitation patterns, 
sea level rise, solar radiation, and extreme weather events. Researchers can use neural 
networks’ strengths to increase the accuracy and geographical precision of climate 
predictions, better capture non-linear correlations between climate variables, and even 
merge diverse data sources into unified predictive models. The purpose of this study is 
to investigate the quickly changing landscape of neural networks in climatic research, 
particularly solar radiation, highlighting innovative applications, methodology, and 
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issues in this exciting and rapidly changing subject, with Nigeria as a focus. Climate 
data analysis and forecasting are critical steps toward understanding and predicting 
weather patterns, climate change, and their consequences for the environment and 
human societies (IPCC, 2020; Hansen et al., 2016). With the increased availability 
of climate data from many sources, such as weather stations, satellite imagery, and 
climate models, data-driven approaches have emerged as critical tools in climate 
research. Furthermore, machine learning techniques such as LSTM and GRU models 
have demonstrated promising performance in climate forecasting tasks (Mu and Zeng, 
2019). Hence, the purpose of this research work is to create a Dihybrid model that 
incorporates the strengths of both LSTM and GRU models to improve prediction 
accuracy. This research will help us obtain a better understanding of solar radiation 
data analysis and forecasting, as well as practical skills in data visualization, machine 
learning, and modelling.

2. Related Works

Climate study relies heavily on statistical analysis, which allows scientists to extract 
significant insights from climate data. Statistical analysis in climate research has various 
benefits, including the ability to detect patterns and trends, quantify uncertainty, and 
provide insights into climatic variability and change. Temperature, precipitation, and sea 
level pressure are all examples of climate parameters that can be analyzed using statistical 
approaches. Furthermore, statistical analysis can be used to assess the effectiveness of 
climate models, which is critical for forecasting future climate change impacts. Climate 
models are built around sophisticated mathematical equations that simulate the Earth’s 
climate system. Statistical analysis can be used to assess the correctness of these models, 
providing information about their strengths and limits. Furthermore, statistical analysis 
can be utilized to determine how climate change affects numerous sectors, including 
agriculture, water resources, and human health. By analyzing climate data and statistical 
models, scientists may provide insights into the possible implications of climate change 
on various sectors, allowing policymakers to build effective adaptation. Strategies. 

Numerous researchers have used statistical approaches to analyze climate data, 
resulting in a better knowledge of climate patterns, trends, and variability. These 
studies highlight the importance of statistical analysis in climate research, laying the 
groundwork for the current study’s methodology. Building on previous work, this 
research aims to improve understanding of Nigerian solar radiation patterns and trends 
by employing statistical analysis approaches to discover insights into variability and 
change. According to Cowls et al. (2023), artificial intelligence (AI) has a significant role 
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in addressing global climate change, offering benefits in understanding and combating 
the crisis, but also raising concerns about social, ethical, and environmental impacts, 
highlighting the need for a balanced approach, particularly in the European Union’s 
policy response. While AI offers promising benefits in enhancing our understanding of 
the crisis and developing effective countermeasures, it also poses significant concerns 
regarding the amplification of social and ethical challenges, as well as the substantial 
carbon footprint associated with AI training (Lanre et al, 2015). Yadav and Chandel 
(2014) reviewed Artificial Neural Network (ANN)--based techniques for solar radiation 
prediction, revealing that ANN models predict solar radiation more accurately than 
conventional methods. The study revealed that the accuracy of ANN models depends 
on input parameter combinations, training algorithms, and architecture configurations. 
Wilks (2011) conducted a thorough assessment of statistical techniques in atmospheric 
sciences, including climate data analysis. They worked on a variety of areas, including 
data preprocessing, visualization, and statistical modelling. Their findings highlighted 
the significance of statistical analysis in understanding atmospheric events and 
climatic variability. Mudelsee (2014) concentrated on time series analysis of climate 
data, addressing several statistical methods for assessing climatic variability. The study 
included issues such as trend analysis, spectral analysis, and wavelet analysis, all of 
which indicated the effectiveness of time series analysis in finding climatic patterns 
and trends. Storch and Zwiers (2001) published a book on statistical techniques in 
climate research, which included themes including data analysis, trend detection, and 
extreme event analysis. Their research emphasized the significance of statistical tools 
in understanding climatic variability and change. Storch and Navarra (1995) used 
statistical methods like empirical orthogonal functions (EOFs) and singular spectrum 
analysis (SSA) to detect climate patterns and trends. These statistical techniques 
emphasize the necessity of understanding natural climatic changes. Wilks (2006) 
used statistical analysis to study precipitation patterns, proving the utility of statistical 
methods like spatial and temporal analysis in identifying precipitation patterns and 
trends in comprehending climatic events. In Nigeria, numerous researches have been 
conducted on climate, particularly solar radiation. Solar radiation and meteorological 
variables are crucial for various applications, and a recent study developed an LSTM-
based time series model to predict and forecast these variables, achieving a 97%-99% 
correlation coefficient and 99.3%-99.9% prediction accuracy (Abayomi et al, 2019). A 
comparative study of nine sunshine and temperature-dependent models for estimating 
global solar radiation in Makurdi and Ibadan, Nigeria, revealed that the exponent 
sunshine-dependent model and linear exponential sunshine-dependent model are more 
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accurate for estimating global solar radiation (Akpootu, Tijjani, and Gana, 2019). The 
quadratic logarithmic and quadratic exponential temperature-dependent models were 
also found to be suitable for estimating global solar radiation, with the most suitable 
sunshine-dependent model fitting best with measured data. 

These works indicate the efficiency of statistical methods in comprehending 
climatic events, emphasizing the significance of statistical analysis in climate science. 
Building on previous work, this research intends to contribute to a better understanding 
of Nigerian climate patterns and trends by identifying insights into solar radiation 
variability and change using Recurrent Neural Networks (RNN) such as Long Short-
term Memory (LSTM) and Gated Recurrent Unit (GRU).

3. Methods, Data Analysis, and Results

In this study, historical climate data from the Nigeria Meteorological Agency’s (NiMeT) 
database, spanning 31 years was analyzed. The data was extracted for seven cities across 
Nigeria, namely Ikeja, Sokoto, Maiduguri, Enugu, Ilorin, and Port Harcourt on a 
monthly basis. The climatic factors collected include solar radiation (sr) measured in 
(ml) (gunn-bellini), sunshine hours (sh), evaporation (ev) measured in (ml), relative 
humidity (rh) measured in percentage, minimum temperature (tmin) in degree Celsius, 
maximum temperature (tmax) in degree Celsius, rainfall (rf) measured in (mm) and 
wind speed (ws) measured in (m/s). The selection of cities covers different regions 
in Nigeria, representing various climate zones. Ikeja and Ilorin represent the western 
region, Sokoto from the northwest, Maiduguri from the north-eastern region, and 
Enugu and Port Harcourt in the southeast and south-south regions, respectively. The 
climatic variables were selected based on their relevance to solar radiation prediction 
and availability in the database. The 31-year monthly data period allows for a 
comprehensive analysis of climate trends and patterns in Nigeria. This allows for a 
comprehensive analysis of climate trends and patterns in Nigeria. 

3.1. LSTM and GRU Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are neural network architectures that have 
demonstrated considerable potential for modelling temporal correlations in data. 
RNNs are classified into two types. LSTM networks and GRU. These networks have 
been widely applied in various fields, including speech recognition, language modelling, 
and time series forecasting. Hochreiter and Schmidhuber (1997) introduced LSTM 
networks as an extension to regular RNNs. LSTM networks are intended to learn 
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long-term relationships in data, solving the vanishing gradient issue that affects regular 
RNNs. LSTM networks are made up of memory cells, input gates, output gates, 
and forget gates that work together to control the flow of information. Cho et al. 
(2014) presented GRU networks, which are a simpler alternative to LSTM networks. 
GRU networks also try to learn long-term dependencies, but with fewer parameters, 
resulting in greater computing efficiency. GRU networks are made up of update and 
reset gates that govern the flow of information. Both LSTM and GRU networks are 
useful for modelling complex temporal relationships in data. In this study, we leverage 
the capacity of these two architectures to learn patterns and trends from climate data to 
build a powerful dihybrid model which was used to estimate solar radiation in Nigeria. 
LSTM and GRU networks’ functional relationship between solar radiation and other 
climatic factors is defined by the network’s learned weights and biases. 

3.1.1. Long Short-Term Memory (LSTM) Networks

LSTM networks are designed to handle the vanishing gradient problem in traditional 
RNNs. They use memory cells to store information for long periods. In the LSTM 
network, the functional relationship is defined through a series of gates (input, forget, 
and output gates) that regulate the flow of information. The network learns the 
relationships between solar radiation and climatic factors by updating its cell state and 
hidden state over time.

 LSTM networks have three main components:
1. Input Gate (IG) which controls the flow of new information into the memory cell.

 it = s(Wixt + Uiht–1 + bi) (1)
2. Output Gate (OG) which controls the output of the memory cell.

3. Forget Gate (FG) which controls the forgetting of information in the memory 
cell.

 ot = s(Woxt + Uoht–1 + bo) (2)
The LSTM network is created by mapping the input sequence and the output 

sequence, denoted as x = (x1, x2, x3,……….xn) and y = (y1, y2, y3,…….., yn). LSTM 
networks use the following equations:

Memory Cell State

The memory cell state ct is updated by combining the previous cell state ct-1 modulated 
by the forget gate ft and the new candidate cell state c~t modulated by the input gate it.
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  ) (3)
 

•	 ft is the forget gate, which controls how much of the previous cell state ct-1 is 
retained.

• it is the input gate, which controls how much of the new candidate value is 
added to the cell state.

• Wc  and Uc is weight matrices applied to the input xt and the previously 
hidden state ht-1 respectively.

The memory cell state equation in (4) combines the retained information from the 
previous cell state and the new candidate values influenced by the current input and 
previous hidden state. The forget gate ft determines how much of the past information 
is kept while the input gate it decides how much new information is added.

Hidden State

The hidden state ht is calculated as follows:
  (4)

• ot is the output gate which controls how much of the cell state tanh(ct) is 
exposed as the hidden state.

 

 
• ct is the current cell state.
Equation (5) uses the output gate ot to filter the activated cell state tanh(ct). The 

hidden state ht is what gets passed to the next time step and can be used for other 
computations like generating outputs.

Output 

The output yt is derived from the hidden state ht such that 

  (5)
Wy is the weight matrix applied to the hidden state ht to produce the final output yt. 
Equation (6) projects the hidden state ht into the desired output space using the weight 
matrix Wy. The resulting yt is the output of the LSTM at time step t. 
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3.1.2. Gated Recurrent Units (GRU) Networks

GRU networks are a simpler alternative to LSTM networks. They achieve similar 
performance with fewer gates and simpler structures. GRU networks use two main 
gates to control the flow of information: the Update Gate (UG) and the Reset Gate 
(RG). GRU networks simplify the structure of LSTM networks by combining the 
forget and input gates into a single update gate and using a reset gate to control the 
influence of the previous hidden state. This results in fewer parameters and potentially 
faster training while retaining the ability to handle long-term dependencies. The use 
of hard tanh and tanh activation functions ensures non-linearity and stability in the 
updates. The GRU networks are made of an update Gate which controls the extent 
to which the hidden state is updated with new information and a reset gate (RG) 
which controls the extent to which the previous hidden state is reset or ignored. GRU 
architecture is as follows:

Candidate Activation

The activation  combine the current input and the reset gate’s application to the 
previous hidden state

 
1. Hidden State

  (6)

•	 zt is the update gate, which controls how much of the previous hidden state 
ht-1 is passed along to the future.

•	 rt is the reset gate that controls how much of the past information i have 
forgotten.

•  the candidate activation combines the current input and the reset gate’s 
application to the previous hidden state.

•	 Leaky_ReLU is the hard tanh activation function defined as

 
 where α = 0.01.

2. Output

  (7)
Wy is the weight matrix applied to the hidden state ht to produce the final output yt.
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3.1.3. Dihybrid of LSTM and GRU Algorithms

A dihybrid model that leverages both LSTM and GRU by combining the strengths 
of both architectures was trained using the climatic dataset. As mentioned earlier 
LSTM networks are known for their ability to learn long-term dependencies due 
to their complex gating mechanisms, which help retain information over long 
sequences. GRUs, on the other hand, offer a simpler gating mechanism, making 
them faster to train and often more efficient for shorter sequences or less complex 
time dependencies. By combining LSTM and GRU layers in a hybrid model, we 
potentially capture a wider range of patterns and dependencies in the climate data, 
improving predictive performance. The idea is to utilize both LSTM and GRU layers 
in the same neural network to capture different aspects of the temporal patterns in 
the data. This approach was particularly of interest since a single architecture such 
as LSTM or GRU is not sufficient to model the complex dynamics of climatic time 
series data.

The Architecture of the Dihybrid Model

In a dihybrid LSTM-GRU model, the LSTM and GRU cells are typically stacked 
or combined in sequence within a neural network layer structure. The input passes 
through an LSTM layer, followed by a GRU layer. The hybrid model leverages both 
mechanisms for capturing temporal dependencies and learning from sequential 
data.

Input to LSTM

  (8)

Output of LSTM as Input to GRU

  (9)

Input Data, xt is fed into the LSTM layer. In the LSTM Layer, ht
LSTM and Ct

LSTM are 
computed using the equations (9). GRU Layer takes ht

LSTM as input and computes ht
GRU 

using the GRU equation. The final output of the hybrid model is ht
GRU. By combining 

the strengths of both LSTM and GRU, the model captures a broader range of patterns. 
Hybrid models often outperform single models in complex prediction tasks. The model 
adapts to various types of dependencies in the data, making it robust, and potentially 
improving the model’s ability to capture long-term dependencies and efficient training 
dynamics.
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3.1.4. Performance Metrics

The four performance measures used to evaluate the performance of the proposed 
models are Mean absolute error (MAE), Mean square error (MSE), Root mean square 
error (RMSE), and R2. N is the number of times the summation iteration is executed.
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RMSE and R2 are defined as:
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ci denotes the actual value. i denotes the estimated value. N is the number of 
times the summation iteration is executed. These performance measures provide 
different insights into the accuracy and robustness of the models used for prediction. 
MAE measures the average magnitude of the errors in a set of predictions, without 
considering their direction. It is the average over the test sample of the absolute 
differences between prediction and actual observation where all individual differences 
have equal weight. MSE measures the average of the squares of the errors, which is 
the difference between the estimator and what is estimated. It is more sensitive to 
outliers than MAE. MAPE measures the accuracy of a method for constructing fitted 
time series values in statistics, specifically how far the predicted values are from the 
actual values in percentage terms. It is useful for understanding the relative error of 
the model. 

3.2. Data Analysis and interpretation of results

The data on climatic factors were structured into panels with each city represented by 
a panel. Each panel comprises 372 observations making a total of 2,232 observations 
available for training and testing the algorithms. The LSTM and GRU models were 
built using hyperparameter tuning to determine the best models. 
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Figure 1: Time plot on Solar Radiation over Enugu, Ikeja, Ilorin, Maiduguri,  
Port-Harcourt, and Sokoto

The plot provides a visual representation of solar radiation across different periods 
for six cities in Nigeria. Each city exhibits distinct patterns and variability in solar 
radiation. Understanding these patterns is crucial for applications such as solar energy 
planning, climate studies, and agricultural forecasting. The plot shows that solar 
radiation levels vary significantly across cities, with Enugu and Port Harcourt showing 
more variability. Maiduguri and Ilorin show more consistent levels, indicating seasonal 
or cyclical weather patterns. Analyzing these patterns helps energy planners identify 
suitable locations for solar panels and optimize energy generation, with cities with 
higher and consistent levels being ideal candidates. Solar radiation is a key factor in 
agricultural productivity. Farmers and agricultural planners can use this information 
to make informed decisions about crop selection, planting schedules, and irrigation 
planning. Regions with higher solar radiation might be more suitable for crops 
requiring more sunlight.

3.2.1. Model Building and Evaluation

All of the modelling and preprocessing procedures were carried out using different 
libraries in the r language. We employed R-Studio IDE throughout the research work. 
The data on the cities were arranged in the form of a panel. Arranging cities in the 
form of a panel improves the ability to analyze complex correlations, compensate 
for unobserved variability, and draw more robust, dynamic, and policy-relevant 
conclusions. The number of units, epochs, and batch sizes alongside the activation 
function, and recurrent activation functions employed in the input, forget, and output 
gates are shown in Table 1. 
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Table 1: Summary of LSTM, GRU, and Dihybrid Architectures using  
Hyperparameter tuning

Architec-
ture

Opti-
mizer

Unit Batch 
Size

Learning 
rate

Activation 
Function

Recurrent 
Activation 
Function

Epochs Trainable 
parameters

LSTM Nadam 150 16 10-5 ReLU Swish 150 271,951

GRU Nadam 150 16 10-5 Tanh Leaky ReLU 150 204,901

Dihybrid Adam 150 16 10-5 Tanh Hard tanh 150 227,251

Each of the algorithms was trained using the tuned parameters in Table 1. The 
LSTM Model uses Rectified Linear Unit activation (ReLU) and Swish recurrent 
activation in its LSTM layers. It is compiled with the Nesterov Accelerated Adaptive 
Moment (Nadam) Estimation Optimizer and a learning rate of 10-5. On the other 
hand, the GRU model uses Tangent Hyperbolic (tanh) activation and Leaky ReLU 
recurrent activation in its GRU layers. It is compiled similarly to the LSTM model, 
with the same optimizer, learning rate, and evaluation metrics. Nadam estimation 
is a stochastic gradient descent optimizer that combines the strengths of Nesterov 
Accelerated Gradient (NAG) and Adaptive Moment (Adam) Estimation optimizers. 
This optimizer allows for the avoidance of local minima, improves convergence, and 
adapts the learning rate for each parameter based on the size of the gradient making 
it more robust and efficient. Leaky ReLU and Swish activation functions enhance 
performance by allowing small input fractions, gating input, learning complex 
patterns, and improving prediction accuracy. Equal values for units, learning rate, 
optimizer, activation functions, batch size, and epochs, provide a consistent basis 
for comparing model performance. Residuals, seasonal, and trend patterns were 
included in the independent variables’ matrix of the two models. The inclusion of 
these components allows the LSTM and GRU to capture complex patterns and 
relationships, reducing errors and overfitting thereby improving the accuracy, 
reliability, and robustness of predictions. The standalone models each comprise one 
input layer, two hidden layers and one dense layer. The LSTM model has the highest 
number of trainable parameters (271,951) due to its two LSTM layers with 150 
units each. This complexity allowed it to capture important patterns in the data. The 
GRU model, with 204,901 trainable parameters, outperforms the LSTM model, 
resulting in faster training times and reduced overfitting risk. The dihybrid model, 
combining LSTM and GRU layers, balances complexity and performance with 
227,251 trainable parameters. 
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3.2.2. Models’ Performance Comparison

The LSTM and GRU models show poor performance with low R2 values, while the 
Dihybrid model outperforms them in all metrics, indicating its superior accuracy and 
efficiency in forecasting the solar radiation dataset, despite similar RMSE and MAE 
values.

Table 2: Performance metrics on the three models

Architecture MSE MAE RMSE R2

LSTM 0.0351 0.1399 0.1399 0.4250
GRU 0.0338 0.1373 0.1373 0.4875

Dihybrid 0.0002 0.0110 0.0110 0.9990

Figure 2: Training History of LSTM and GRU Models

Table 2 shows the results of the model training. The LSTM model has the highest 
MSE, MAE, and RMSE values, indicating poor performance compared to the other 
models. The GRU model performs slightly better than the LSTM model but still 
exhibits high error metrics and a small R2 value, indicating that it also does not fit the 
data well. The Dihybrid model significantly outperforms both the LSTM and GRU 
models across all metrics. The extremely low MSE, MAE, and RMSE values, coupled 
with a near-perfect R2 value, indicate an excellent fit to the data. The best-performing 
model for the solar radiation data, demonstrating exceptional accuracy and fit. Figure 
2 shows that the rapid drop in MSE and MAE points in the direction that our models 
quickly learn to reduce error during the first training steps. The stabilization of 
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further training narrows down and indicates that errors are not significantly reduced 
by additional training. The convergence of training and validation loss suggests good 
generalization capabilities.

3.2.3. Predictions and Residuals

Figure 2: Actual Values versus Predicted Plot and Residual Histogram on the  
Dihybrid Model using the test dataset 

Figure 2 illustrates that the GRU model more accurately predicts actual data 
compared to LSTM. While both models generally produce residuals near zero, GRU 
exhibits fewer outliers and a narrower spread of residuals, indicating superior prediction 
precision and consistency. This visual analysis aligns with the performance metrics in 
Table 2, confirming that GRU outperforms LSTM in forecasting solar radiation data.

Figure 3: Actual Values versus Predicted Plot and Residual Histogram on the  
Dihybrid Model using the training dataset
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Figure 4: Actual Values versus Predicted Plot and Residual Histogram on the  
Dihybrid Model using the test dataset

Figures 3 and 4 show the performance of the dihybrid model in predicting solar 
radiation using the training and test datasets. The plots on the upper and lower left 
panels compare the actual and predicted values of solar radiation over a series of indices 
for the dihybrid model. The predicted values closely follow the actual values across most 
of the indices. The dihybrid model shows high accuracy in predicting solar radiation, 
with minimal prediction errors. Residuals are concentrated around zero, indicating 
small errors. The model’s excellent performance is confirmed by its close alignment 
with actual values and narrow residual distribution. This makes the dihybrid model the 
most effective among those tested, including LSTM and GRU, and a strong candidate 
for solar radiation forecasting applications due to its high accuracy and reliability.

Figure 5: Training History of Dihybrid Model

The Dihybrid model is generally stable, with low loss and MAE values over 
epochs, while there are periodic spikes (Figure 5). The Dihybrid model’s continuously 
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low loss and MAE values indicate that it has learned the data well and can generate 
reliable predictions. The spikes in the plots represent periods when the model struggled 
to match the data precisely, and were caused by noise or unexpected changes in the 
validation set. The figures show that the Dihybrid model is operating well, with low 
and steady loss and MAE values, despite some minor oscillations.

4. Conclusion

The panel dihybrid Recurrent Neural Network (RNN) model leverages the strengths 
of Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) to enhance 
the accuracy of solar radiation forecasting. By combining these architectures, the 
dihybrid model effectively captures complex temporal patterns in solar radiation data, 
outperforming individual LSTM and GRU models. The high accuracy of the dihybrid 
model is evident in its close alignment with actual solar radiation values, making it an 
ideal tool for renewable energy planning and sustainability initiatives. Specifically, this 
approach can enable Nigeria to optimize its solar energy resources, enhance energy 
security, and contribute to global climate change mitigation efforts. However, further 
improvements can be made by integrating real-time solar radiation data, expanding the 
model’s application to larger datasets, and combining it with other machine learning 
techniques to enhance its predictive capabilities.
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